областное государственное казённое общеобразовательное учреждение «Школа-интернат для обучающихся с ограниченными возможностями здоровья № 92»

> Утверждаю: И.о. директора ОГКОУ «Цьколь откон интернята № 92»

Рабочая программа

основного общего образования обучающихся с ОВЗ (вариант 2.2.2)

Алгебра

для 10 класса

Сеставитель программы: учитель математики Фокина Наталья Кузьминична

Срограмма обсуждена на МО учителей-предметников Протокол № 1 от 25.08.23 г Руководитель МО

/Пусикова Н.А./

Проверено: Заместитель директора по УВР __/Романова Е.В./

г. Ульяновск

Пояснительная записка

Рабочая программа по предмету «Алгебра» для 10 класса (вариант 2.2.2) для слабослышащих и позднооглохших обучающихся составлена с учётом особых образовательных потребностей слабослышащих и позднооглохших обучающихся, получающих образование на основе АООП ООО.

Программа разработана на основе

- Федерального государственного образовательного стандарта основного общего образования (Приказ Минпросвещения России от 31.05.2021 г. № 287,
- Концепции развития математического образования в Российской Федерации (утверждена распоряжением Правительства Российской Федерации от 24 декабря 2013 г. № 2506-р),
- Приказа Минпросвещения России от 24.11.2022 г. № 1025 «Об утверждении федеральной адаптированной образовательной программы основного общего образования для обучающихся с ограниченными возможностями здоровья»
- адаптированной основной образовательной программы ООО ОГКОУ «Школа-интернат №92»

Данная рабочая программа ориентирована на учебник: «Алгебра 9 класс» / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2020 г.

Ценностные ориентиры в обучении учебному предмету «Математика» обучающихся с нарушениями слуха

Математика, являясь одним из системообразующих предметов школьного образования, играет важную роль в личностном и когнитивном развитии обучающихся с нарушениями слуха. Содержание данного курса содействует развитию логического мышления, овладению рациональными способами и приёмами освоения математического знания, осознанию законов, которые лежат в основе изучаемых явлений, а также существующих взаимосвязей между явлениями.

Значительна роль курса математики для овладения обучающимися с нарушениями слуха социальными компетенциями, включая способность решать значимые для повседневной жизни человека практические задачи, умение использовать приобретённые знания для изучения окружающей действительности.

Содержание курса математики является важным и для успешного освоения программного материала по другим учебным дисциплинам, для продолжения обучения в системе непрерывного образования, для подготовки подрастающего поколения к трудовой деятельности — в связи с неоспоримой ролью математики в научно-техническом прогрессе, современном производстве, науке.

Общая характеристика учебного предмета «Математика»

Учебная дисциплина «Математика» осваивается на уровне ООО по варианту 2.2.2 АООП в пролонгированные сроки: с 5 по 10 классы включительно.

Основными линиями содержания учебного курса в 5—10 классах являются следующие: «Числа и вычисления», «Алгебра» («Алгебраические выражения», «Уравнения и неравенства», «Функции»), «Геометрия» («Геометрические фигуры и их свойства», «Измерение геометрических величин»), «Вероятность и статистика».

Развитие указанных линий осуществляется параллельно: каждая в соответствии с собственной логикой, но при этом в тесном взаимодействии. Кроме того, их объединяет логическая составляющая, традиционно присущая математике и пронизывающая все математические курсы и содержательные линии. Сформулированное во ФГОС ООО требование «уметь оперировать понятиями: определение, аксиома, теорема, доказательство; умение распознавать истинные и ложные высказывания, приводить примеры и контрпримеры, строить высказывания и отрицания высказываний» относится ко всем курсам, а формирование логических умений распределяется по всем годам обучения на уровне ООО.

В процессе уроков математики обучающиеся с нарушениями слуха знакомятся с разнообразными математическими понятиями и терминами, с математической фразеологией, что позволяет стимулировать речевое развитие преодолевать его недостатки. И, наоборот, благодаря И совершенствованию словесной речи происходит наиболее глубокое и математического формирование основательное освоение знания, абстрактного мышления. В данной связи существенная роль в обучении спецификой математике принадлежит слову. В соответствии образовательно-коррекционной работы математики ходе уроков предусматривается предъявление вербальных инструкций, постановка словесных побуждение обучающихся к рассуждениям задач, комментированию выполняемых действий, объяснению осуществлённых операций. Учитель должен создавать условия, при которых у обучающихся с нарушенным слухом будет возникать потребность в речевом общении для математической информации, получения той иной или также планирования, проверки практических выполнения, действий математического содержания.

Когнитивная составляющая курса математики позволяет обеспечить как требуемый стандартом необходимый (базовый) уровень математической подготовки, так и повышенный уровень, необходимый для углублённого изучения предмета.

Курс математики имеет ярко выраженную воспитательную направленность. Благодаря разнообразным видам деятельности и формам организации работы обучающихся на уроках математики происходит воспитание целеустремлённости, воли, настойчивости, осознанной

потребности доводить начатое дело до конца. Выполняя те или иные задания, обучающиеся с нарушениями слуха осознают, что небрежное отношение к работе, отсутствие сосредоточенности при решении примеров, задач, осуществлении графических работ и др. обусловливает возникновение ошибок. Осуществляя деятельность в группе, в подгруппах, парах, обучающиеся с нарушением слуха учатся бесконфликтным способам решения проблемных ситуаций, спорных вопросов, принятию иного мнения, уважению к точке зрения другого человека.

Содержание уроков математики позволяет также обеспечивать эстетическое воздействие на личность, в частности, за счёт предъявления аккуратно выполненных дидактических пособий, анализа изображений, представленных в учебнике, включая геометрический материал.

Освоение обучающимися с нарушениями слуха программного материала по математике осуществляется преимущественно на уроках под руководством учителя. Однако для прочного освоения содержания курса требуется предусмотреть регулярное выполнение домашних заданий, исключая дни проведения контрольных работ. При определении содержания и объёма домашнего задания необходимо учесть недопустимость перегрузки обучающихся учебным материалом.

Программа включает примерную тематическую и терминологическую лексику, которая должна войти в словарный запас обучающихся с нарушениями слуха за счёт целенаправленной отработки, прежде всего, за счёт включения в структуру словосочетаний, предложений, текстов, в т.ч. в связи с формулировкой выводов, выдвижением гипотез, оформлением логических рассуждений, приведением доказательств и т.п.

Принципы реализации образовательно-коррекционной работы на уроках математики.

- принцип научности
- принцип развивающего обучения
- принцип воспитывающего обучения
- принцип связи обучения с жизнью
- принцип прочного усвоения знаний
- принцип использования наглядности
- принцип моделирования.
- принцип индивидуального подхода к обучающимся
- принцип опоры в обучении математике на здоровые силы обучающегося
 - принцип деятельностного подхода.
- принцип единства обучения математике с развитием словесной речи и неречевых психических
 - принцип интенсификации речевого общения

В процессе образовательно-коррекционной работы могут быть использованы цифровые технологии, к которым относят информационно-образовательные среды, электронный образовательный ресурс, дистанционные

образовательные технологии, электронное обучение с помощью интернета и мультимедиа.

Преимуществами использования цифровых технологий образовательно-реабилитационном процессе являются доступность, вариативность, наглядность обучения, обратная учителя связь обучающимися, построение индивидуальной траектории изучения учебного материала, обучение с применением интеллектуальных систем поддержки (для адаптации учебного материала к особым образовательным потребностям обучающихся). Организация обучения на основе цифровых технологий позволяет активизировать компенсаторные механизмы обучающихся, образовательно-реабилитационный процесс полисенсорного подхода к преодолению вторичных нарушений в развитии.

Цифровые технологии могут использоваться в различных вариациях: в виде мультимедийных презентаций, как учебник и рабочая тетрадь, в качестве словаря или справочника с учебными видеофильмами, как тренажёр для закрепления новых знаний или в виде практического пособия.

В результате использования цифровых технологий в образовательном процессе у обучающихся с нарушением слуха формируются четыре вида цифровой компетентности:

- •информационная и медиакомпетентность (способность работать с разными цифровыми ресурсами),
- •коммуникативная (способность взаимодействовать посредством блогов, форумов, чатов и др.),
- •техническая (способность использовать технические и программные средства),
- •потребительская (способность решать с помощью цифровых устройств и интернета различные образовательные задачи).

Цели изучения учебного предмета «Алгебра»

Цель учебной дисциплины заключается в обеспечении овладения обучающимися с нарушениями слуха необходимым (определяемым стандартом) уровнем математической подготовки в единстве с развитием мышления и социальных компетенций, включая:

- формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция), обеспечивающих преемственность и перспективность математического образования обучающихся;
- подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, понимание математики как части общей культуры человечества;
- развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики;
- формирование функциональной математической грамотности: умения распознавать проявления математических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других

учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты.

Место предмета в учебном плане

Учебный предмет «Алгебра» входит в предметную область «Математика и информатика», являясь обязательным.

Содержание учебного предмета «Алгебра», представленное в рабочей программе, соответствует ФГОС ООО, Примерной адаптированной основной образовательной программе основного общего образования (вариант 2.2.2).

в 7–10 классах – «Алгебра» (включая элементы статистики и теории вероятностей), «Геометрия» «Вероятность и статистика».

На изучение алгебры в 10 классе выделяется по 4 часа в неделю (132 часа в год).

Планируемые результаты освоения обучающимися адаптированной программы по алгебре

При проектировании планируемых результатов реализуется индивидуально-дифференцированный подход как один из ведущих в процессе образования обучающихся с нарушениями слуха.

В соответствии с требованиями стандарта система планируемых личностных, метапредметных и предметных результатов устанавливает и обучающимися осваиваемые образовательноописывает В ходе коррекционного процесса учебно-познавательные и учебно-практические задачи. В их числе особое место занимают те, которые выносятся на итоговую аттестацию, в том числе ГИА выпускников. Для успешного выполнения этих задач обучающиеся с нарушениями слуха должны овладеть системой универсальных и специфических для каждого учебного предмета и специальных курсов по Программе коррекционной работы системой учебных действий (регулятивных, коммуникативных, познавательных) с учебным материалом и, прежде всего, с опорным учебным материалом как основы для последующего обучения.

Структура и содержание планируемых результатов освоения проектируются с учётом особых образовательных потребностей обучающихся с нарушениями слуха.

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

1. Российская гражданская идентичность — патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России, чувство ответственности и долга перед Родиной, идентификация себя в качестве гражданина России, осознание и ощущение личностной сопричастности судьбе российского народа. Осознание этнической

принадлежности, знание истории, культуры своего народа, своего края, основ культурного наследия народов России и человечества (идентичность человека с российской многонациональной культурой, сопричастность истории народов и государств, находившихся на территории современной России); интериоризация гуманистических, демократических и традиционных ценностей многонационального российского общества. Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам ценностям народов России и народов мира.

- 2. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.
- 3. Субъективная значимость овладения и использования словесного (русского/русского и национального) языка.
- 4. Желание и умения пользоваться словесной речью (устной и письменной), взаимодействовать со слышащими людьми при использовании устной речи как средства общения. Ценностно-смысловая установка на постоянное пользование индивидуальными слуховыми аппаратами как важного условия, способствующего устной коммуникации, наиболее полноценной ориентации неречевых окружающего мира; самостоятельный звуках информации, в том числе, при использовании Интернет-технологий, о средств слухопротезирования И ассистивных способствующих улучшению качества жизни лиц с нарушениями слуха.
- 5. Уважительное отношение к истории и социокультурным традициям лиц с нарушениями слуха; с учетом коммуникативных, познавательных и социокультурных потребностей использование в межличностном общении с лицами, имеющими нарушения слуха, русского жестового языка, владение калькирующей жестовой речью.
- 6. Готовность и способность обучающихся с нарушениями слуха строить жизненные планы, в т.ч. определять дальнейшую траекторию образования, осуществлять выбор профессии и др., с учётом собственных возможностей и ограничений, обусловленных нарушениями слуха.
- 7. Готовность и способность обучающихся с нарушениями слуха к саморазвитию и самообразованию на основе мотивации к обучению и познанию; сформированность ответственного отношения к учению.
- 8. Готовность и способность к осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов, собственных возможностей и ограничений, обусловленных нарушением слуха, потребностей рынка труда.

- 9. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным (способность поступкам К нравственному самосовершенствованию; веротерпимость, уважительное отношение религиозным чувствам, взглядам людей или их отсутствию; знание основных норм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, готовность на их основе к сознательному самоограничению в поступках, поведении, расточительном потребительстве; сформированность представлений об основах светской этики, культуры традиционных религий, их роли в развитии культуры и истории России и в становлении гражданского общества и государственности; понимание значения нравственности в жизни человека, семьи и общества).
- 10. Доброжелательное отношение к людям, готовность к взаимодействию с разными людьми (в том числе при использовании вербальных и невербальных средств коммуникации), включая лиц с нарушением слуха, а также слышащих сверстников и взрослых; способность к достижению взаимопонимания на основе идентификации себя как полноправного субъекта общения; готовность к конструированию образа допустимых способов общения, конвенционированию интересов, процедур, к ведению переговоров.
- 11. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.
- 12. Уважительное отношения к труду, наличие опыта участия в социально значимом труде.
- 13. Освоенность социальных норм, правил поведения (включая речевое поведение и речевой этикет), ролей и форм социальной жизни в группах и сообществах, в т.ч. лиц с нарушениями слуха.
- 14. Идентификация себя в качестве субъекта социальных преобразований с учётом собственных возможностей и ограничений, вызванных нарушением слуха.
- 15. Способность с учётом собственных возможностей и ограничений, обусловленных нарушением слуха/нарушением слуха и соматическими заболеваниями строить жизненные планы на краткосрочное будущее (определять целевые ориентиры, формулировать адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов).
- 16. Способность к практической реализации прав, закреплённых в нормативных документах по отношению к лицам с ограниченными возможностями здоровья и инвалидностью, в т.ч. с нарушениями слуха.

- 17. Освоение компетентностей в сфере организаторской деятельности; интериоризация ценностей созидательного отношения к окружающей действительности, ценностей социального творчества, ценности продуктивной организации совместной деятельности, самореализации в группе и организации, ценности «другого» как равноправного партнёра, компетенций формирование анализа, проектирования, организации способов деятельности, рефлексии изменений, взаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала.
- 18. Участие в школьном самоуправлении и общественной жизни (в пределах компетенций) с учётом региональных, этнокультурных, возрастных социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которые формируют сами обучающиеся с нарушениями слуха; включённость в непосредственное гражданское участие, готовность участвовать жизнедеятельности подросткового общественного объединения, продуктивно взаимодействующего с социальной средой и социальными институтами (включая организации, представляющие интересы лиц с нарушениями слуха, другими ограничениями по здоровью инвалидностью).
- 19. Сформированность ценности здорового и безопасного образа жизни с учётом собственных возможностей и ограничений, вызванных нарушением слуха; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, в т.ч. с учётом ограничений, вызванных нарушениями слуха; правил поведения на транспорте и на дорогах, в т.ч. с учётом ограничений, вызванных нарушениями слуха.
- 20. Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического (способность понимать художественные отражающие разные этнокультурные традиции; сформированность основ художественной культуры обучающихся как части их общей духовной культуры, как особого способа познания жизни и средства организации общения; эстетическое, эмоционально-ценностное видение окружающего способность мира; эмоционально-ценностному самовыражению художественном ориентации В нравственном пространстве культуры с учётом собственных возможностей и ограничений, вызванных нарушением слуха; потребность в общении с художественными произведениями, сформированность активного отношения к традициям художественной культуры как смысловой, эстетической и личностнозначимой ценности).
- 21. Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта

экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятельности).

22. Готовность к общению и взаимодействию со слышащими сверстниками и на иностранном языке; умение пользоваться иноязычной словесной речью устной письменной форме И ДЛЯ решения коммуникативных задач; толерантное и уважительное отношение культурным различиям, особенностям и традициям других стран.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения рабочей программы по математике по варианту 2.2.2 АООП ООО соответствуют результатам, отражённым во ФГОС ООО и ООП ООО, но адаптированы применительно к особым образовательным потребностям обучающихся с нарушениями слуха.

Метапредметные результаты включают освоенные обучающимися нарушением слуха межпредметные понятия УУД (регулятивные, познавательные, коммуникативные), способность ИХ использования учебной, познавательной и социальной практике с учётом образовательных потребностей; самостоятельность планирования учебной осуществления деятельности учебного И организации сотрудничества с педагогами и сверстниками; построение индивидуальной образовательной траектории с учётом образовательных потребностей каждого обучающегося и дополнительных соматических заболеваний для части обучающихся.

1. Универсальные познавательные действия обеспечивают формирование базовых когнитивных процессов обучающихся (освоение методов познания окружающего мира; применение логических, исследовательских операций, умений работать с информацией).

Базовые логические действия:

- выявлять (самостоятельно и/или с помощью учителя/других участников образовательно-коррекционного процесса) и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать с использованием доступных средств коммуникации, включая устно-дактильную речь, определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
- воспринимать и с использованием доступных средств коммуникации, включая устно-дактильную речь, формулировать, преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; условные;

- выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий;
- делать выводы (самостоятельно и/или с помощью учителя/других участников образовательно-коррекционного процесса) с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;
- разбирать доказательства математических утверждений (прямые и от противного), проводить (самостоятельно и/или с помощью учителя/других участников образовательно-коррекционного процесса) несложные доказательства математических фактов, приводить примеры и контрпримеры; обосновывать собственные рассуждения;
- выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать (самостоятельно и/или с помощью учителя/других участников образовательно-коррекционного процесса) наиболее подходящий.

Базовые исследовательские действия:

- использовать вопросы как исследовательский инструмент познания; самостоятельно и/или с помощью учителя/других участников образовательно-коррекционного процесса формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу;с использованием доступных средств коммуникации, включая устно-дактильную речь, аргументировать свою позицию, мнение;
- -проводить по плану несложный эксперимент, небольшое исследование по установлению особенностей математического объекта, зависимостей объектов между собой;
- -с использованием доступных средств коммуникации, включая устнодактильную речь, формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;
- -самостоятельно и/или с помощью учителя/других участников образовательно-коррекционного процесса прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

- -выявлять недостаточность и избыточность информации, данных, необходимых для решения задачи;
- -самостоятельно и/или с помощью учителя/других участников образовательно-коррекционного процесса выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;

- выбирать форму представления информации и иллюстрировать решаемые задачи схемами, диаграммами, иной графикой и их комбинациями;
- оценивать надёжность информации по критериям, предложенным учителем или сформулированным самостоятельно и/или с помощью учителя/других участников образовательно-коррекционного процесса.
- 2. Универсальные коммуникативные действия обеспечивают сформированность социальных навыков обучающихся.

Общение:

- воспринимать и формулировать с использованием доступных средств коммуникации, включая устно-дактильную речь, суждения в соответствии с условиями и целями общения; выражать свою точку зрения в устных/устнодактильных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
- в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; в корректной форме и с использованием доступных средств коммуникации, включая устнодактильную речь, формулировать разногласия, свои возражения;
- представлять результаты решения задачи, эксперимента, исследования, проекта; самостоятельно и/или с помощью учителя/других участников образовательно-коррекционного процесса выбирать формат выступления с учётом задач презентации и особенностей аудитории.

Сотрудничество:

- понимать и использовать преимущества командной и индивидуальной работы при решении учебных математических задач; принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать мнения нескольких людей;
- участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и др. с использованием доступных речевых средств); выполнять свою часть работы и координировать свои действия с другими членами команды; оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.
- 3. Универсальные регулятивные действия обеспечивают формирование смысловых установок и жизненных навыков личности.

Самоорганизация:

-составлять план, алгоритм решения задачи (или его часть), выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.

Самоконтроль:

- владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
- предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, найденных ошибок, выявленных трудностей;
- оценивать соответствие результата деятельности поставленной цели и условиям, объяснять причины достижения или недостижения цели, находить ошибку, давать оценку приобретённому опыту.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Числа и вычисления:

- сравнивать и упорядочивать рациональные и иррациональные числа;
- выполнять арифметические действия с рациональными числами, сочетая устные и письменные приёмы, выполнять вычисления с иррациональными числами;
- находить значения степеней с целыми показателями и корней;
 вычислять значения числовых выражений;
- округлять действительные числа, выполнять прикидку результата вычислений, оценку числовых выражений.

Уравнения и неравенства:

- решать линейные и квадратные уравнения, уравнения, сводящиеся к ним, простейшие дробно-рациональные уравнения;
- решать системы двух линейных уравнений с двумя переменными и системы двух уравнений, в которых одно уравнение не является линейным;
- решать текстовые задачи алгебраическим способом с помощью составления уравнения или системы двух уравнений с двумя переменными;
- проводить простейшие исследования уравнений и систем уравнений,
 в том числе с применением графических представлений (устанавливать,
 имеет ли уравнение или система уравнений решения, если имеет, то сколько,
 и пр.);
- решать линейные неравенства, квадратные неравенства; изображать решение неравенств на числовой прямой, записывать решение с помощью символов;
- решать системы линейных неравенств, системы неравенств, включающие квадратное неравенство; изображать решение системы неравенств на числовой прямой, записывать решение с помощью символов;
 - использовать неравенства при решении различных задач.

Функции:

- распознавать функции изученных видов. Показывать схематически расположение на координатной плоскости графиков функций вида: y = kx, y = kx + b, $y = \frac{k}{x}$, $y = ax^2 + bx + c$, $y = x^2$, $y = \sqrt{x}$, y = |x| в зависимости от значений коэффициентов; описывать свойства функций;
- строить и изображать схематически графики квадратичных функций, описывать свойства квадратичных функций по их графикам;
- распознавать квадратичную функцию по формуле, приводить примеры квадратичных функций из реальной жизни, физики, геометрии;

Арифметическая и геометрическая прогрессии;

- распознавать арифметическую и геометрическую прогрессии при разных способах задания;
- выполнять вычисления с использованием формул n-го члена арифметической и геометрической прогрессий, суммы первых n членов;
- изображать члены последовательности точками на координатной плоскости;
- решать задачи, связанные с числовыми последовательностями, в том числе задачи из реальной жизни (с использованием калькулятора, цифровых технологий).

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения математики ученик должен знать/понимать

- существо понятия математического доказательства; примеры доказательств;
- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.

уметь

- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

Содержание курса алгебры

Повторение (14 часа)

Квадратичная функция (26 час.)

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция $y = ax^2 + bx + c$, её свойства и график. Неравенства второй степени с одной переменной. Метод интервалов.

Цель: расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции,

сформировать умение решать неравенства вида $ax^2 + bx + c > 0$ $ax^2 + bx + c < 0$, где $a \ne 0$.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции $y=ax^2$, её свойств и особенностей графика, а также других частных видов квадратичной функции — функции $y=ax^2+n$, $y=a(x-m)^2$. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции $y=ax^2+bx+c$ может быть получен из графика функции $y=ax^2+c$ помощью двух параллельных переносов. Приёмы построения графика функции $y=ax^2+bx+c$ отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Формирование умений решать неравенства вида $ax^2 + bx + c > 0$ $ax^2 + bx + c < 0$, где $a \ne 0$, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ox).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Обучающиеся знакомятся со свойствами степенной функции у= x^n при четном и нечетном натуральном показателе п.. Вводится понятие корня п-й степени. Обучающиеся должны понимать смысл записей вида $\sqrt[3]{-27}$, $\sqrt[4]{81}$. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

Уравнения и неравенства с одной переменной (19 час.)

Целые уравнения. Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени.

Цель: систематизировать и обобщить сведения о решении целых с одной переменной, Выработать умение решать простейшие системы,

содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

В данной теме завершаемся изучение систем уравнений с двумя. переменными. Основное внимание уделяется системам, в которых одно уравнений первой второй. Известный степени, другое обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Уравнения и неравенства с двумя переменными (23 час.)

Цель:Выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и неравества с двумя переменными. Текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В данной теме завершаемся изучение систем уравнений с двумя. переменными. Основное внимание уделяется системам, в которых одно уравнений первой степени, другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Определять, является ли пара чисел решением неравенства. Изображать на координатной плоскости множество точек, задаваемое неравенством. Иллюстрировать на координатной плоскости множество решений системы неравенств.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Прогрессии (17 час.)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

Элементы комбинаторики и теории вероятностей (15 час.)

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок,

размещений и сочетаний. При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический классический И подходы определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

Итоговое повторение (22 час.)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школ

Примерные виды деятельности обучающихся:

- объяснение значения понятий (формулирование определений);
- доказательство и опровержение с помощью контрпримеров;
- решение текстовых задач арифметическими способами;
- формулирование правил (в рамках изученного);
- чтение (орфоэпически и грамматически верное) математических записей;
- анализ текста задачи, переформулировка условия, извлечение необходимой информации, моделирование условия при помощи визуальных опор (схем, рисунков, реальных предметов);
 - построение логических цепочек рассуждений;
- критическая оценка и обоснование полученного ответа, осуществление самоконтроля;
- проведение несложных исследований в рамках изученного (в т.ч. с использованием калькулятора, компьютера);
 - подбор и приведение примеров с опорой на социально-бытовой опыт.

Примерная тематическая и терминологическая лексика Примерные слова и словосочетания

График линейного уравнения с двумя переменными, график функции, действительные числа, доказательство неравенств, задачи на координатной плоскости, квадратные уравнения, линейная функция, линейное уравнение с разложение квадратного трёхчлена на множители, двумя переменными, решение задач с помощью систем уравнений, решение систем уравнений способом подстановки (сложения), с точностью до..., свойства неравенств, свойства функции, системы уравнений, сложные эксперименты, графиков. Арифметическая прогрессия, вероятность, выборочные графическое исследования, геометрическая прогрессия, гистограмма, интервальный ряд, исследование уравнения, квадратичная функция,

квадратные неравенства, парабола, параболоид, проценты (простые, сложные), прогноз, рациональные выражения, системы уравнений с двумя переменными, статистика, статистическое оценивание, уравнение (целые, дробные), характеристика разброса, числовые последовательности.

Примерные фразы

Функция f называется возрастающей на множестве X, если большему значению аргумента соответствует большее значение функции.

Если на всей области определения функция возрастает, то её называют возрастающей функцией, а если убывает – то убывающей функцией.

Функцию, взрастающую на множестве X или убывающую на множестве X, называют монотонной функцией на множестве X.

Нам нужно указать область определения и область значений функции. Мы должны найти промежутки, на которых функция f убывает, возрастает и сохраняет постоянное значение.

Я готов(а) (могу, не могу, затрудняюсь, хочу) доказать: если чётная функция монотонна на положительной части области определения, то она имеет противоположный характер монотонности на отрицательной части области определения.

Мы сформулировали определение возрастающей и убывающей функций на множестве X. Нам нужно привести примеры возрастающей и убывающей функций.

Я могу объяснить, в чём состоит особенность графика чётной функции и привести примеры чётной и нечётной функции.

Я готов(а) ответить на вопрос о том, какая функция называется ограниченной и неограниченной.

Я затрудняюсь привести примеры функции, ограниченной снизу.

Я могу объяснить на примере, как построить график функции y=f(-x) и график функции y=-f(-x), зная график функции y=f(x).

Я могу обосновать, как выполняется построение графиков функции g=If(x)I и g=f(IxI).

Нам нужно найти коэффициенты квадратичной функции $y=ax^2+bx+c$, зная, что её график проходит через точки A (0;2), B (2;0), C (3;8).

Мы решали уравнения с одной пересменой, обе части которых были целыми выражениями. Такие уравнения называются целыми уравнениями.

Я могу/затрудняюсь/не могу сформулировать определение линейного неравенства с двумя переменными и привести примеры.

Я могу/затрудняюсь/не могу ответить на вопрос о том, какую фигуру представляет множество точек координатной плоскости, координаты которых – решения системы линейных неравенств.

Я могу дать определение возрастающей (убывающей) последовательности и привести примеры.

Примерные выводы

Функция f называется возрастающей на множестве X, если для любых двух значений аргумента x1 и x2 множества X, таких, что x2 >x1, выполняется неравенство f(x2) > f(x1). Функция f называется убывающей на множестве X, если для любых двух значений аргумента x1 и x2 множества X, таких, что x2 >x1, выполняется неравенство f(x2) < f(x1).

Мы знаем некоторые свойства монотонных функций. Монотонная функция каждое своё значение принимает лишь при одном значении аргумента. Если функция y=f(x) является возрастающей (убывающей), то функция y=-f(x) является убывающей (возрастающей). Сумма двух возрастающих функций является возрастающей функцией, а сумма двух убывающих функций является убывающей функцией. Если обе функции f и g возрастающие или обе убывающие, то функция $\varphi(x)=f(g(x))$ — возрастающая функция. Если функция y=f(x) монотонна на множестве X и сохраняет на этом множестве знак, то функция $g(x)=\frac{1}{f(x)}$ на множестве X имеет противоположный характер монотонности.

Функция f называется чётной, если для любого $x \in D(f)$ верно равенство f(-x)=f(x). Функция f называется нечётной, если для любого $x \in D(f)$ верно равенство f(-x)=-f(x).

Функцию, которую можно задать формулой вида $y=ax^2+bx+c$, где a≠0, называют квадратичной функцией.

Любую квадратичную функцию $y=ax^2+bx+c$ можно задать формулой вида $y=a(x-m)^2+n$.

Рассмотрим важное свойство параболы. При вращении вокруг оси симметрии парабола описывает фигуру — параболоид. Если внутреннюю поверхность параболоида сделать зеркальной и направить на неё пучок лучей, параллельных оси, то отражённые лучи соберутся в одной точке — фокусе. Если параболическое зеркало направить на Солнце, то температура в фокусе окажется такой высокой, что можно будет расплавить металл. Если источник света поместить в фокусе, то отражённые от зеркальной поверхности параболоида лучи оказываются направленными параллельно его оси и не рассеиваются. Это свойство используется при изготовлении прожекторов и автомобильных фар.

Чтобы построить график функции y=If(x)I, если известен график функции y=f(x), нужно поставить на месте ту его часть, где $f(x) \ge 0$, и симметрично отобразить относительно оси х другую его часть, где f(x) > 0.

Чтобы построить график функции y=If(x)I, если известен график функции y=f(x), нужно оставить на месте ту часть графика функции y=f(x), которая соответствует неотрицательной части области определения функции y=f(x). Отразив эту часть симметрично относительно оси у, получим другую часть графика, соответствующую отрицательной части области определения.

Целое уравнение с одной переменной — это уравнение, левая и правая части которого — целые выражения.

При решении задачи мы применили графический способ решения системы двух уравнений с двумя переменными. Он состоит в том, что строят графики обоих уравнений и находит координаты общих точек этих графиков. Но графический способ позволяет найти решение системы только приближённо.

Любую систему двух линейных уравнений с двумя переменными можно решить способом подстановки или способом сложения. Но подругому происходит с системами уравнений более высоких степеней. Для них нет общих способов решения. Лишь некоторые из них можно решить способом подстановки или способом сложения.

Последовательность, в которой каждый последующий член больше предыдущего, называется возрастающей. Последовательность, в которой каждый последующий член меньше предыдущего, называется убывающей.

Последовательность (an) называется ограниченной сверху, если существует такое число m, что an≤mпри любом n.

Последовательность (an) называется ограниченной снизу, если существует такое число p, что an≥pпри любом n.

Последовательность, ограниченная сверху и снизу, называется ограниченной последовательностью.

Каждый член арифметической прогрессии, начиная со второго, является средним арифметическим предыдущего и последующего членов.

Функция с областью определения X и областью значений Y называется обратимой, если обратное ей соответствие между множеством Y и множеством X – функция.

Если функция f обратима, то обратное ей соответствие называют функцией, обратной функции f.

Конечное множество, в котором установлен порядок его элементов, называют перестановкой.